Finding Malicious Domains

Kevin Feasel


R, Security

Rafael San Miguel Carrasco uses dimensionality reduction to figure out if a domain is malicious:

Dimensionality reduction is a common techique to visualize observations in a dataset, by combining all features into two, that can then be used to draw the observation in an scatter plot.

One popular algorithm that implements this technique is PCA (Principal Components Analysis), which is available in R through the prcomp() function.

The algorithm was applied to observations of sthe dataset, and ggplot2’s geom_point() function was used to draw the results in a 2D chart.

I would want to see this done for a couple hundred thousand domains, but I do like the idea of taking advantage of statistical modeling tools to find security threats.

Related Posts

Testing Spatial Equilibrium Concepts With tidycensus

Ignacio Sarmiento Barbieri walks us through the concept of spatial equilibrium and tests using data from the tidycensus package: Let’s take the model to the data and reproduce figures 2.1. and 2.2 of “Cities, Agglomeration, and Spatial Equilibrium”. The focus are two cities, Chicago and Boston. These cities are chosen because both differ in how easy […]

Read More

Partitioning Data For Performance Improvement In R

John Mount shares a few examples of partitioning and parallelizing data operations in R: In this note we will show how to speed up work in R by partitioning data and process-level parallelization. We will show the technique with three different R packages: rqdatatable, data.table, and dplyr. The methods shown will also work with base-R and other packages. For each of the above […]

Read More


June 2016
« May Jul »