Learning R

Kevin Feasel

2015-12-23

R

Grant Fritchey is learning R:

Awesome. Fixed that algorithm problem, right?

Wrong.

That’s because algorithms are not the problem… the only problem. The real problem is data preparation. A lot of the examples you’ll read online are very straight forward with nice neat data sets. That’s because they were carefully groomed and prepared. Here I am looking at the wooly wild real data and I’m utterly lost in how to properly prepare this so that it’s appropriately set up as a continuous distribution(or a distribution at all). WOOF! The reason this is so hard is because I actually don’t understand the data fundamentals of the problem I’m trying to solve in exactly the way needed to solve the problem. More cogitation is necessary.

Just because you can write R code doesn’t mean you are a data scientist.  Grant has the right mindset, but this post is fair warning that R’s complexity isn’t so much in its being a DSL, but rather in the domain itself.

Related Posts

The Theory Behind cdata

John Mount has a video explaining the concepts behind cdata: We also have two really nifty articles on the theory and methods: Fluid data reshaping with cdata Coordinatized Data: A Fluid Data Specification Please give it a try! Click through for the video, which I found very helpful in tying together a number of data […]

Read More

Microsoft R Open 3.4.3

David Smith announces Microsoft R Open 3.4.3: Microsoft R Open (MRO), Microsoft’s enhanced distribution of open source R, has been upgraded to version 3.4.3 and is now available for download for Windows, Mac, and Linux. This update upgrades the R language engine to the latest R (version 3.4.3) and updates the bundled packages (specifically: checkpoint, curl, doParallel, foreach, and iterators) to new versions. MRO is 100% compatible with […]

Read More

Categories

December 2015
MTWTFSS
« Nov Jan »
 123456
78910111213
14151617181920
21222324252627
28293031