Global Maps In R

The folks at Sharp Sight Labs show how to create high-quality map visuals in R:

Maps are great for practicing data visualization. First of all, there’s a lot of data available on places like Wikipedia that you can map.

Moreover, creating maps typically requires several essential skills in combination. Specifically, you commonly need to be able to retrieve the data (e.g., scrape it), mold it into shape, perform a join, and visualize it. Because creating maps requires several skills from data manipulation and data visualization, creating them will be great practice for you.

And if that’s not enough, a good map just looks great. They’re visually compelling.

With that in mind, I want to walk you through the logic of building one step by step.

Read on for a step by step process.

Related Posts

Logistic Regression In R

Steph Locke has a presentation on performing logistic regression using R: Logistic regressions are a great tool for predicting outcomes that are categorical. They use a transformation function based on probability to perform a linear regression. This makes them easy to interpret and implement in other systems. Logistic regressions can be used to perform a classification […]

Read More

Feature Improvements In Microsoft R Server 9.1

David Smith gives us a nice roundup of feature improvements in Microsoft R Server 9.1: Interoperability between Microsoft R Server and sparklyr. You can now use RStudio’s sparklyr package in tandem with Microsoft R Server in a single Spark session New machine learning models in Hadoop and Spark. The new machine learning functions introduced with Version 9.0 […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728