dplyr Basics

Kevin Feasel

2017-02-22

R

Gerald Belton shows off the main functions and operators in dplyr:

The pipe operator

The pipe operator is one of the great features of the tidyverse. In base R, you often find yourself calling functions nested within functions nested within… you get the idea. The pipe operator %>% takes the object on the left-hand side, and “pipes” it into the function on the right hand side.

Click through for the rest of the story.

Related Posts

Building Dynamic Row Headers With ML Services

Dave Mason tries to get around his RESULT SETS limitation when using SQL Server Machine Learning Services: The columns in the data frame clearly have names, but SQL Server isn’t using them. The data frame columns have types in R too (more on this in a moment). Now that makes me wonder about the data […]

Read More

Defining Result Sets With ML Services

Dave Mason covers a pain point in SQL Server Machine Learning Services: The example above is so simple, defining the RESULT SETS poses no problems. But what if the format of the output isn’t known at design time? R (or Python) might take the input data set and add, remove, or change columns conditionally. Further, […]

Read More

Categories

February 2017
MTWTFSS
« Jan Mar »
 12345
6789101112
13141516171819
20212223242526
2728