Press "Enter" to skip to content

Category: Visualization

Air Travel Route Maps With ggplot2

Peter Prevos wants to create a pretty map of flights he’s taken:

The first step was to create a list of all the places I have flown between at least once. Paging through my travel photos and diaries, I managed to create a pretty complete list. The structure of this document is simply a list of all routes (From, To) and every flight only gets counted once. The next step finds the spatial coordinates for each airport by searching Google Maps using the geocode function from the ggmap package. In some instances, I had to add the country name to avoid confusion between places.

The end result is imperfect (as Peter mentions, ggmap isn’t wrapping around), but does fit the bill for being eye-catching.

Comments closed

Power BI Themes

Gogula Aralingam notes that Power BI can now support basic skinning:

The March 2017 update of Power BI Desktop comes with a preview of Themes. Right now it is in its simplest of forms: You manually create a JSON file that has a very few attributes that can set basic color themes to your reports. So all you have to do is create file that looks like this:

Click through for an example.  This isn’t a true fix for the lack of Color Vision Deficiency support, but you can plug in safe colors (for example, this article includes some) and skirt the issue until there’s real support.

Comments closed

ggraph

David Smith has a post on a new R package to display graphs:

A graph, a collection of nodes connected by edges, is just data. Whether it’s a social network (where nodes are people, and edges are friend relationships), or a decision tree (where nodes are branch criteria or values, and edges decisions), the nature of the graph is easily represented in a data object. It might be represented as a matrix (where rows and columns are nodes, and elements mark whether an edge between them is present) or as a data frame (where each row is an edge, with columns representing the pair of connected nodes).

The trick comes in how you represent a graph visually; there are many different options each with strengths and weaknesses when it comes to interpretation. A graph with many nodes and edges may become an unintelligible hairball without careful arrangement, and including directionality or other attributes of edges or nodes can reveal insights about the data that wouldn’t be apparent otherwise. There are many R packages for creating and displaying graphs (igraph is a popular one, and this CRAN task view lists many others) but that’s a problem in its own right: an important part of the data exploration process is trying and comparing different visualization options, and the myriad packages and interfaces makes that process difficult for graph data.

Click through for more information as well as a mesmerizing animated image.

Comments closed

Analyzing Flight Data With Sparklyr

Aki Ariga continues his sparklyr series with some analysis of US flight data:

In this post, we will show you a visualization and build a predictive model of US flights with sparklyr. Flight visualization code is based on this article.

This post assumes you already have the following tables:

You should make these tables available through Apache Hive or Apache Impala (incubating) with Hue.

There’s some setup work to get this going, but getting a handle on sparklyr looks to be a good idea if you’re in the analytics space.

Comments closed

Global Maps In R

The folks at Sharp Sight Labs show how to create high-quality map visuals in R:

Maps are great for practicing data visualization. First of all, there’s a lot of data available on places like Wikipedia that you can map.

Moreover, creating maps typically requires several essential skills in combination. Specifically, you commonly need to be able to retrieve the data (e.g., scrape it), mold it into shape, perform a join, and visualize it. Because creating maps requires several skills from data manipulation and data visualization, creating them will be great practice for you.

And if that’s not enough, a good map just looks great. They’re visually compelling.

With that in mind, I want to walk you through the logic of building one step by step.

Read on for a step by step process.

Comments closed

Gloom Indexes

David Smith points out an interesting use of R:

Radiohead is known for having some fairly maudlin songs, but of all of their tracks, which is the most depressing? Data scientist and R enthusiast Charlie Thompson ranked all of their tracks according to a “gloom index”, and created the following chart of gloominess for each of the band’s nine studio albums. (Click for the interactive version, crated with with highcharter package for R, which allows you to explore individual tracks.)

Do click through for Charlie’s explanation, including where the numbers come from.

Comments closed

Waffle Charts

Devin Knight continues his Power BI custom visuals series with the waffle chart:

In this module you will learn how to use the Waffle Chart Power BI Custom Visual.  The Waffle Chart visual is most useful for presenting a percentage of data. This chart is a great option to choose over other visuals like Pie Charts, which are not great at showing proportions of data.

Waffle charts are infographic-friendly visuals; they’re easy to read and as long as you don’t have too many categories, easy to compare.

Comments closed