Press "Enter" to skip to content

Category: Visualization

“Pretty But Useless” Visuals

I continue my dashboard visualization series with a bit of an extended rant:

The best use of a pie chart is to show a simple share of a static total.  Here, we can see that Daredevil has almost half of the critics’ reviews, and that The Punisher and Jessica Jones are split.

This simple pie chart also shows some of the problems of pie charts.  The biggest issue is that people have trouble with angle, making it hard to distinguish relative slices.  For example, is Jessica Jones’s slice larger or is The Punisher’s?  It’s really hard to tell in this case, and if that difference is significant, you’re making life harder for your viewers.

Second, as slice percentages get smaller, it becomes harder to differentiate slices.  In this case, we can see all three pretty clearly, but if we start getting 1% or 2% slices, they end up as slivers on the pie, making it hard to distinguish one slice from another.

Third, pie charts usually require one color per slice.  This can lead to an explosion of color usage.  Aside from potential risks of using colors which in concert are not CVD-friendly, adding all of these colors has yet another unintended consequence.  If you use the same color in two different pie charts to mean different things, you can confuse people, as they will associate color with some category, and so if they see the same color twice, they will implicitly assign both things the same category.  That leads to confusion.  Yes, careful reading of your legend dissuades people of that notion, but by the time they see the legend, they’ve already implicitly mapped out what this color represents.

Fourth, pie charts often require legends, which increases eye scanning.

Click through to read me complain about other types of visuals, too.

Comments closed

Visuals I Like

I continue my series on dashboard visualization:

This leads me to a little bit of advice for choosing bars versus columns.  You will want to choose a bar chart if the following are true:

  1. Category names are long, where by “long” I mean more than 2-3 characters.
  2. You have a lot of categories.
  3. You have relatively few periods—ideally, you’ll only have one period with a bar chart.

By contrast, you would choose a column chart if:

  1. Viewing across periods is important.  For example, I want to see the number of critic reviews fluctuate across the season for each of the TV shows.
  2. You have many periods with relatively few categories.  The more periods and the fewer categories, the more likely you are to want a column chart.
  3. Category names are short, by which I mean approximately 1-3 characters.

Some people will rotate text 90 degrees to try to turn a bar chart into a column chart.  I don’t like that because then people need to rotate the page or crane their necks.  In that case, just use the bar chart.

I like Cleveland dot plots, but they’re not implemented at all in Power BI and the two add-ons in the store aren’t that great either.  Also, there’s bonus material explaining why The Punisher season 1 was better than Daredevil season 1.

Comments closed

Visual Principles And Dashboards

I continue my series on dashboard visualization by looking at pictures:

In a bit more detail, you can make a dashboard glanceable by following these guidelines:

  1. Ensure that there is clear purpose in your metric design and display.  In other words, think about which metrics you want to show, how you want to show them, and where you put metrics in relation to one another.

  2. Group metrics by function into sections.  Look at the dashboard above.  It has four clusters of metrics:  those around revenue, new customers, revenue per customer, and customer acquisition cost.  All of the revenue metrics are clustered in the top-left quadrant of the dashboard.  Furthermore, all revenue-related metrics (that is, revenue metrics and revenue per customer metrics) are on the left-hand side of the dashboard, so the CEO can focus on that half and learn about revenue and revenue per customer.  She doesn’t need to look in the top-left corner for one revenue measure and in the bottom right for another; she can focus down to a portion of the dashboard and get an answer.

  3. It should be easy to see and differentiate those clusters of metrics.  Our natural instinct might be to put borders around the clusters, but whitespace is your friend—remember, less is more.  If you add a bit more whitespace between clusters of measures, you’ll make it easy for people to see that there’s a difference without distracting them with unnecessary lines.

I cover the Rule of Thirds, Glanceability, and Color Vision Deficiency, three important considerations for a designer.

Comments closed

Visual Principles

I have a post looking at three visual principles important to creating good dashboards:

In European languages, we read from left to right and from top to bottom.  In Middle Eastern languages like Hebrew and Arabic, we read from right to left and top to bottom.  In ancient Asian languages (particularly Chinese), we read from top to bottom and right to left, but in modern Chinese, we read left to right and top to bottom.  As far as Japanese goes, we read every which way because YOLO.  The way we read biases the way we look at things.

There has been quite a bit of research done on looking at where we look on a screen or on a page. I’m going to describe a few layouts, but focusing on research done on Europeans.  If you poll a group of Israeli or Saudi Arabian readers, flip the results.

Read the whole thing.  The second part of that comes out soon.

Comments closed

Know Your Audience

I continue my series on dashboard visualization:

Before you build a dashboard, you have to know your audience.  If you don’t know who your viewers will be and where their interests lie, you run the risk of building a dashboard which fails to serve their needs.  When that happens, people stop looking at your dashboard.  In order to increase the likelihood that your dashboard will be useful, I have a few critical questions:

  1. Who is your intended audience?
  2. How will your intended audience use your dashboard?
  3. What actions do you want them to take as a result of what they see?
  4. Are you showing the right measures in the right way?
  5. What cultural differences might matter?

The rest of this post will drill into each of these concepts.

These are the types of questions which can make the difference between a dashboard people love and a dashboard people never use.

Comments closed

What Is A Dashboard

I’ve started a new series on data visualization:

There are a few things which make dashboards useful:

  • Ideally, the dashboard is a “single pane of glass.”  By that, I mean that all relevant indicators are visible on the screen at the same time.  With my car, it’s close but no cigar:  I can see one of miles traveled, average fuel mileage, or current fuel mileage at a time.  If I want to see a different item, I need to hit a button on the steering wheel to scroll through those options.  By contrast, the TV show dashboard has everything on a single screen with no scrolling or switching required.

  • Key Performance Indicators (KPIs) are readily apparent.  For the TV show dashboard, we have a couple key metrics on display:  episode rating and number of votes as sourced from IMDB at the time I pulled those numbers.

  • Relevant KPIs are bunched together in a logical fashion.  On the top half of the dashboard, we see two visuals relating to average rating by show.  The bottom half show rating & user vote counts for the three highest-rated shows.

  • Layouts are consistent between dashboard elements and between related dashboards.  On the TV show dashboard, bars and columns use a single, consistent color.  Also, shows have thematic colors:  Daredevil in red, Jessica Jones blue, Punisher black, etc.  If I had a second dashboard for season two, I would want to use the same theme.

Read on for more details about what a dashboard is and some of the sundry forms of dashboards.

Comments closed

Design Concepts: Affordances

Meagan Longoria continues her design concepts series:

Affordances allow us to take advantage of common experiences and cultural standards to create immediate understanding of our designs. Examples of affordances in physical products include:

  • A coffee cup with a handle suggests that you should grip the cup by the handle.

  • Buttons on doorbells are for pushing.

  • The material and shape of balls suggest they are for throwing and bouncing.

Read the whole thing.  If you want to learn more about affordances, Don Norman’s The Design of Everyday Things is a great starting point.

Comments closed

ChartAccent Power BI Custom Visual

Devin Knight continues his Power BI custom visuals series:

In this module you will learn how to use the ChartAccent LineChart Custom Visual. This visual is a custom line chart that allows you to annotate individual data points, data series and ranges.

This visual runs the risk of getting very “noisy” but that can be fine if you’re building a presentation and want to build a somewhat complicated, annotated visual.

Comments closed

Using The Squint Test

Meagan Longoria gives us the squint test:

While you can definitely perform the Squint Test on your report within Power BI Desktop, I recommend also testing in a browser once the report is deployed to PowerBI.com or to the Power BI Report Server portal since colors and objects may be slightly different there.

The Squint Test is also used in web page design, so web developers have made tools to aid them in this check. While just squinting at the page is perfectly sufficient, using a browser extension or another tool allows you to easily share your findings with others. In the Chrome Browser, there is a free extension called The Squint Test. This extension places an eye icon near the top right of the browser window. Clicking the icon provides a slider that allows you to increase or decrease the amount of blur applied to the page.

Meagan also has an example of applying this test and picks a dashboard where she can make some improvements, so check it out.

Comments closed

The ggplot2 Books

Hadley Wickham has a couple of books which teach a lot about ggplot2.  The first book I’d recommend is his and Garrett Grolemund’s R For Data Science book, which is available for free online:

To map an aesthetic to a variable, associate the name of the aesthetic to the name of the variable inside aes(). ggplot2 will automatically assign a unique level of the aesthetic (here a unique color) to each unique value of the variable, a process known as scaling. ggplot2 will also add a legend that explains which levels correspond to which values.

The colors reveal that many of the unusual points are two-seater cars. These cars don’t seem like hybrids, and are, in fact, sports cars! Sports cars have large engines like SUVs and pickup trucks, but small bodies like midsize and compact cars, which improves their gas mileage. In hindsight, these cars were unlikely to be hybrids since they have large engines.

Wickham also has the source to build his ggplot2 book online.  If you don’t want to build the source, you also have the option of buying the book.

Comments closed