Contrasting Plotly And Seaborn

Natasha Sharma contrasts the Seaborn and Plotly libraries for visualizing data:

It was important to use a library which can provide easy and high-class interactivity. Before embedding the plots into my website code, I tested a few different libraries like Matplotlib and Seaborn in order to visualize the results and to see how different they can look. After few trials, I came across Plotly library and found it valuable for my project because of its inbuilt functionality which gives user a high class interactivity.

In this post, I am going to compare Seaborn and Plotly using – Bar Chart and Heatmap diagram. I will be using Breast cancer dataset to visualize these plots. But before jumping into the comparison, the dataset I used needed preprocessing like data cleaning so, I followed steps.

In this case, the contrast is mostly lines of code versus visual quality; read on for more.

Related Posts

Building TensorFlow Neural Networks On Spark With Keras

Jules Damji has an example of using the PyCharm IDE to use Keras to build TensorFlow neural network models on the Databricks MLflow library: Our example in the video is a simple Keras network, modified from Keras Model Examples, that creates a simple multi-layer binary classification model with a couple of hidden and dropout layers and […]

Read More

Scatterplots For Multivariate Analysis

Neil Saunders declutters a complicated visual with a simple scatterplot: Sydney’s congestion at ‘tipping point’ blares the headline and to illustrate, an interactive chart with bars for city population densities, points for commute times and of course, dual-axes. Yuck. OK, I guess it does show that Sydney is one of three cities that are low density, […]

Read More


April 2018
« Mar May »