Visualizing Geo-Spatial Data In R

Carson Sievert shows off the plotly library:

You might be wondering, “What can plotly offer over other interactive mapping packages such as leafletmapviewmapedit, etc?”. One big feature is the linked brushing framework, which works best when linking plotly together with other plotly graphs (i.e., only a subset of brushing features are supported when linking to other crosstalk-compatible htmlwidgets). Another is the ability to leverage the plotly.js API to make efficient updates in shiny apps via plotlyProxy(). Speaking of efficiency, plotly.js keeps on improving the performance of their WebGL-based rendering, so I recommend trying plot_ly() (with toWebGL()) and/or plot_mapbox() if you have lots of graphical elements to render. Also, by having a consistent interface between these various mapping approaches, it’s much quicker and easier to switch from one approach to another when you need to leverage a different set of strengths and weaknesses.

Plotly’s on my list of things I’ll eventually get to one of these days.  H/T R-Bloggers

Related Posts

Python versus R (Again)

Alex Woodie looks at whether Python is dominating R in the data science space: There is some evidence that Python’s popularity is hurting R usage. According to the TIOBE Index, Python is currently the third most popular language in the world, behind perennial heavyweights Java and C. From August 2018 to August 2019, Python usage surged […]

Read More

The Importance of Interaction in Power BI

Marc Lelijveld continues a series on storytelling with Power BI: Many times, I see reports with loads of visuals on the pages. This results in both a really poor performance, as well as the end user has no clue what the key message is of this report. You can always ask yourself, is this visual […]

Read More

Categories

April 2018
MTWTFSS
« Mar May »
 1
2345678
9101112131415
16171819202122
23242526272829
30