Visualizing Geo-Spatial Data In R

Carson Sievert shows off the plotly library:

You might be wondering, “What can plotly offer over other interactive mapping packages such as leafletmapviewmapedit, etc?”. One big feature is the linked brushing framework, which works best when linking plotly together with other plotly graphs (i.e., only a subset of brushing features are supported when linking to other crosstalk-compatible htmlwidgets). Another is the ability to leverage the plotly.js API to make efficient updates in shiny apps via plotlyProxy(). Speaking of efficiency, plotly.js keeps on improving the performance of their WebGL-based rendering, so I recommend trying plot_ly() (with toWebGL()) and/or plot_mapbox() if you have lots of graphical elements to render. Also, by having a consistent interface between these various mapping approaches, it’s much quicker and easier to switch from one approach to another when you need to leverage a different set of strengths and weaknesses.

Plotly’s on my list of things I’ll eventually get to one of these days.  H/T R-Bloggers

Related Posts

Thinking About Font Sizes

Stephanie Evergreen shares some good information on font sizes: Did you know that you regularly read type set in size 8, or even smaller? In printed materials, captions and less important information (think: photograph credits, newsletter headline subtext, magazine staff listings) are usually reduced to something between 7.5 to 9 points. We generally read that […]

Read More

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More


April 2018
« Mar May »