Press "Enter" to skip to content

Category: Visualization

The Power of Pre-Attentive Attributes

Elena Drakulevska is seeing pink elephants:

In a world packed with data, how do you make sure your key points don’t get lost in the noise?

Enter the Pink Elephant Principle—a concept that makes sure your most important elements stand out, like a big pink elephant in the middle of a room. It’s impossible to ignore, and that’s exactly what you want for the critical parts of your report!

The irony of this is that the historical term of seeing pink elephants is a person so drunk that he’s hallucinating. Humor of the term aside, Elena drives home a very important principle around ensuring you take advantage of pre-attentive attributes to ensure users see what’s important with the least cognitive effort.

Comments closed

Creating Custom Visuals in Power BI with DAX

Kurt Buhler shows one way to customize Power BI visuals:

When creating reports in Power BI, you regularly come across scenarios where you want to show data in a certain way that is not straightforward in the standard “core visuals”. Sometimes, the visualization needs to reflect particularities about an organization’s business processes or its data. Other times, you simply want a more creative design to visualize the data in the most effective way. In this article, we discuss what to do in these scenarios, describing one method where you can make custom visualizations by using a single DAX measure, and the caveats and limitations of this particular approach.

In this article, our objective is to produce a matrix visual with the Timeline SVG, like in the following diagram.

Read on for several methods to handle when Power BI doesn’t do something out of the box, and a focus on creating a custom visual via DAX measure with an SVG. But do read the whole thing, as Kurt explains why this isn’t necessarily a great method.

Comments closed

Domain Lineage in Microsoft Fabric

Sandeep Pawar creates 1000 words of value:

In Fabric, you can use the Domains to create a data mesh architecture. It allows you to organize the data and items by specific business domains within the organization and make the overall data architecture decentralized. You can create domains within domains and assign workspaces to each domain. As it grows, you may find it challenging to understand how the domains & workspaces have been organized. Below code will help you trace the domains, subdomains and the workspaces assigned to them.

Click through to see how you can use the graphviz library in Python to generate a simple domain chart.

Comments closed

Comparing Power BI Stacked Column Charts

Meagan Longoria compares and contrasts:

One of the new features in the August Power BI Desktop release is the updated legends that are styled to more accurately reflect the per-series formatting on the visual. This made me curious how close I could get to the clean look of a Deneb (vega-lite) stacked bar chart.

I used open source data from the Vega github repo and applied a few filters in Power BI. I used exactly the same source data in each chart, filtering down to five sites and 9 varieties. I chose a visual with a legend, data labels, and total labels to display the differences. We can argue about whether you should show a chart with this many labels another day.

Click through to see how the in-built visual compares to a custom visual of the same form.

Comments closed

Rating a Dashboard

Martin Schoombee explains the challenge of dashboard review:

A little while ago I was asked to rate a Power BI dashboard. The person who asked, participated in a Power BI challenge (I’ll call it that because that’s the way they are being marketed) and wanted some feedback on the submission. I agreed on the condition that the feedback would be public and in the form of a blog post.

Martin has a thoughtful explanation of the difficulty of providing a review (especially without important context around what the end users intend to do) but then does yeoman’s work talking about the visuals.

Comments closed

Building a Graph Visual with Fabric and KQL

Brian Sherwin builds a graph:

For quite a while, I have been extremely interested in data visualization. Over the last few years, I have been focused on ways to visualize graph databases (regardless of where the data comes from Using force directed graphs to highlight the similarities or “connected communities” in data is incredibly powerful. The purpose of this post is to highlight the recent work that the Kusto.Explorer team has done to visualize graphs in Azure Data Explorer database with data coming from a Fabric KQL Database.

Note: The Kusto.Explorer application used to visualize the graph is currently only supported on Windows.

I’ll just sit here in the corner with my Linux laptop, not jealous or anything.

Comments closed

Highlighting a Single Data Point in Power BI

Kurt Buhler points something out:

Effective visualizations provide context so that you can interpret the numbers and what they mean to you. Is this number bad or is it good? This is particularly important for visuals that aim to provide a quick, 3-second overview, like cards, KPIs, and simple trendlines. You can provide context by comparing to a target, but if no target is available, you can also compare to a measure of central tendency, like the average or median. However, instead of comparing to an aggregate, you might also want to compare to other categories.

Consider the following example, which shows the desired end result for this article: a plot which highlights a selected value so that the user can compare it to all others. This example uses some DAX and formatting with a line chart and scatterplot to achieve the result of a joint plot atop a jitter plot. If you want to learn more about what a joint plot or a jitter plot is, we gave an overview of these and similar chart types in a previous article.

This is something I find frustratingly difficult with Power BI. Kurt does a great job of showing how to get there, but it seems like it should be a lot easier to do.

Comments closed