Press "Enter" to skip to content

Category: Query Tuning

Row Goals And Anti-Joins

Paul White continues his row goals series:

The optimizer assumes that people write a semi join (indirectly e.g. using EXISTS) with the expectation that the row being searched for will be found. An apply semi join row goal is set by the optimizer to help find that expected matching row quickly.

For anti join (expressed e.g. using NOT EXISTS) the optimizer’s assumption is that a matching row will not be found. An apply anti join row goal is not set by the optimizer, because it expects to have to check all rows to confirm there is no match.

If there does turn out to be a matching row, the apply anti join might take longer to locate this row than it would if a row goal had been used. Nevertheless, the anti join will still terminate its search as soon as the (unexpected) match is encountered.

Another very interesting part of the series and well worth the time to read.

Comments closed

Row Goals On Anti-Joins

Paul White continues his row goals series:

The optimizer assumes that people write a semi join (indirectly e.g. using EXISTS) with the expectation that the row being searched for will be found. An apply semi join row goal is set by the optimizer to help find that expected matching row quickly.

For anti join (expressed e.g. using NOT EXISTS) the optimizer’s assumption is that a matching row will not be found. An apply anti join row goal is not set by the optimizer, because it expects to have to check all rows to confirm there is no match.

If there does turn out to be a matching row, the apply anti join might take longer to locate this row than it would if a row goal had been used. Nevertheless, the anti join will still terminate its search as soon as the (unexpected) match is encountered.

This is a shorter article but very useful in understanding row goals, along with the rest of his series.

Comments closed

When UNION ALL Can Beat OR

Bert Wagner compares a couple methods for writing a query:

Suddenly those key-lookups become too expensive for SQL Server and the query optimizer thinks it’ll be faster to just scan the entire clustered index.

In general this makes sense; SQL Server tries to pick plans that are good enough in most scenarios, and in general I think it chooses wisely.

However, sometimes SQL Server doesn’t pick great plans. Sometimes the plans it picks are downright terrible.

If that particular topic is interesting, I’ve a blog post from a few years back on a similar vein.

Comments closed

Automatic Tuning In SQL Server 2017

Arun Sirpal shows off one of the more interesting features in SQL Server 2017:

Before we begin any further let’s do a little recap. Automatic tuning in SQL Server 2017 notifies you whenever a potential performance issue is detected, and lets you apply corrective actions, or lets the Database Engine automatically fix performance problems, this is also available in Azure SQL Database.

There are 2 parts to it, automatic plan correction and automatic index management, for SQL Server 2017, automatic index management it IS NOT part of the product.

To switch automatic plan correction on you will need to run the following code against your database.

I’m looking forward to seeing this expand much further.

Comments closed

Units Of Measure In The ShowPlan Schema

Grant Fritchey shows off the ShowPlan Schema:

Because the showplan schema contains notes throughout stating what the units of measure are, what each of the values means. For instance, I can explain why SerialDesiredMemory, DesiredMemory, RequestedMemory are identical:

…Provide memory grant estimate as well as actual runtime memory grant information. Serial required/desired memory attributes are estimated during query compile time for serial execution. The rest of attributes provide estimates and counters for query execution time considering actual degree of parallelism. SerialRequiredMemory: Required memory in KB if the query runs in serial mode. The query will not start without this memory. SerialDesiredMemory: Memory estimated to fit intermediate results in KB if the query runs in serial mode. RequiredMemory: Required memory in KB for the chosen degree of parallelism. If the query runs in serial mode, this is the same as SerialRequiredMemory. …

That’s taken directly from the 2017 schema. The units of measure are KB.

I’d never seen this before, so that’s going on my to-read list.

Comments closed

When AT TIME ZONE Is Too Slow

Robert Davis troubleshoots a performance problem relating to time zones:

Time Zones were definitely being a drag today. I got an email from one of the developers at work asking about the performance difference between 2 queries. The only difference between the 2 queries is that one of them uses the AT TIME ZONE clause that was added in SQL Server 2016. I have not played around with this particular clause, but we do store quite a bit of data in the datetimeoffset data type. In the table in the developer’s queries, the data is all stored in the Eastern time zone, but they are considering storing it in additional time zones and will want to be able to display it in the Eastern time zone even if not stored that way. Thus, AT TIME ZONE.

When the developer was testing the conversion function, he noticed that the query slowed waaaayyyyy down when he added AT TIME ZONE. Before adding AT TIME ZONE to the query, STATISTICS TIME for the query was: CPU time: 145549 ms, elapsed time: 21693 ms.. It returned 8,996 rows, but if I removed the DISTINCT, it returned over 72M rows. That’s a lot of clams … er, data.

Read on for the rest of the story, including Robert’s solution.  Also check out his Connect item related to this.

Comments closed

When Join Order Matters

Bert Wagner takes a look at one of the lesser appreciated tricks in performance tuning:

I had a great question submitted to me (thank you Brandman!) that I thought would make for a good blog post:

…I’ve been wondering if it really matters from a performance standpoint where I start my queries. For example, if I join from A-B-C, would I be better off starting at table B and then going to A & C?

The short answer: Yes. And no.

One of my favorite query tuning books is SQL Tuning by Dan Tow.  Parts of it are rather dated at this point—like pretty much anything involving a rule-based optimizer—but the gist still works well.  What it comes down to is finding the best single table from which to drive your query (based on table size, filters, etc.) and selecting the appropriate join order afterward.  It’s fairly time-consuming effort, but for the 0.5-1% of queries which really need it, it can be the difference between an awful plan and a good one.

Comments closed

Interleaved Execution And Compatibility Levels

Arun Sirpal gives us some helpful information regarding interleaved execution in SQL Server 2017:

I have read-only T-SQL that references the MSTVF. I did have some code that use both data modifications and cross apply but interleaved execution does not occur in those scenarios.

So on my SQL Server 2017 instance I set the database to 110 compatibility mode and set query store on where then I execute my code.

Note that 110 is the compatibility mode for SQL Server 2012.  That becomes an important part of Arun’s story.

Comments closed

Window Function Sort Performance

Lukas Eder explains one potential issue with window functions against large data sets:

Usually, this blog is 100% pro window functions and advocates using them at any occasion. But like any tool, window functions come at a price and we must carefully evaluate if that’s a price we’re willing to pay. That price can be a sort operation. And as we all know, sort operations are expensive. They follow O(n log n) complexity, which must be avoided at all costs for large data sets.

In a previous post, I’ve described how to calculate a running total with window functions (among other ways). In this post, we’re going to calculate the cumulative revenue at each payment in our Sakila database.

This is a good article comparing how different RDBMS products handle a fairly complicated windowed query and what you can do to improve performance.

Comments closed

Join Elimination

Lukas Eder has a nice post explaining different forms of automatic join elimination:

We intended to fetch all customers and their addresses. But observe: We project only columns from the CUSTOMER table and we don’t have any predicates at all, specifically not predicates using the ADDRESS table. So, we’re completely ignoring any contributions from the ADDRESS table. We never really needed the JOIN in the first place!

And in fact, the optimiser can prove this too, because of the FOREIGN KEY constraint on C.ADDRESS_ID, which guarantees that every CUSTOMER record has exactly one corresponding ADDRESS record. The JOIN does not duplicate, nor remove any CUSTOMER rows, so it is unneeded and thus eliminated (by some, not all databases, will list each database at the end of the article).

So, the database can rewrite the SQL statement to the following, equivalent SQL statement in the presence of said FOREIGN KEY

Read on for a comparison across different products as well.

Comments closed