Press "Enter" to skip to content

Category: Data

Data Retention: Definition and Policy

Joey Jablonski thinks about data retention:

Data retention policies should be defined in a way that they are easy to understand, easy to be implemented programmatically, and should enable engineering teams to operate independently most of the time when working with datasets that are known and already leveraged by the organization. In addition to policy definitions, data governance leaders should ensure changes are part of data literacy plans for training and rollout to ensure awareness across the organization.

This is something that most DBAs provide input into but don’t directly control. Still, it’s good to know some of the challenges around data retention and figure out how to apply it to your organization.

Comments closed

Security Practices for Delta Sharing

Andrew Weaver, et al, share some advice:

When you enable Delta Sharing, you configure the token lifetime for recipient credentials. If you set the token lifetime to 0, recipient tokens never expire.

Setting the appropriate token lifetime is critically important for regulatory, compliance and reputational standpoint. Having a token that never expires is a huge risk; therefore, it is recommended using short-lived tokens as best practice. It is far easier to grant a new token to a recipient whose token has expired than it is to investigate the use of a token whose lifetime has been improperly set.

Click through for eight such tips.

Comments closed

Detecting Data Changes in Power BI Incremental Refresh

Chris Webb writes some M:

One feature of Power BI incremental refresh I’ve always been meaning to test out is the ability to create your own M queries to work with the “detect data changes” feature, and last week I finally had the chance to do it. The documentation is reasonably detailed but I thought it would be a good idea to show a worked example of how to use it to get direct control over what data is refreshed during an incremental refresh.

Read on to see how it works, including a couple gotchas around things like the shape of query results.

Comments closed

Finding Sample Data Online

Mara Pereira goes searching for data:

Have you ever struggled to find sample data to play with in Power BI?

Did you spend hours (sounds crazy, but it happened to me too!) just looking for a dataset with insurance data? Healthcare data? Housing prices data?

Did you ever wonder “where are people finding the data to create those Netflix and Amazon reports that seem to be everywhere these days? Seriously, tell me your secret!”?

Click through for three good sites. Another one I’ve taken to is the US Bureau of Labor Statistics, which is the federal department responsible for tracking things like employment data, consumer prices, and compensation data. The plus side to these datasets is that you get the whole range of data cleanup, warehousing, querying, and analytics over data which is both real and fairly interesting. For a broader take, data.gov has open source data hosted by the US federal government, though I haven’t spent much time working with it.

Comments closed

Visualizing Kafka Stream Lineage

David Araujo and Julia Peng show off stream lineage in Confluent Cloud:

Stream Lineage is a tool Confluent built to address the lack of data visibility in Kafka and event-driven architectures. Confluent’s Stream Lineage provides an interactive map of all your data flows that enable users to:

1. Understand what data flows are running both now or at any point in the past

2. Trace where each data flow originated from

3. Track how data is transformed along its journey

4. Observe where each data flow ends up

Read on to see how it works.

Comments closed

Data Lakehouse Cleanrooms in Databricks

Matei Zaharia, et al, announce an interesting idea:

We are excited to announce data cleanrooms for the Lakehouse, allowing businesses to easily collaborate with their customers and partners on any cloud in a privacy-safe way. Participants in the data cleanrooms can share and join their existing data, and run complex workloads in any language – Python, R, SQL, Java, and Scala – on the data while maintaining data privacy.

With the demand for external data greater than ever, organizations are looking for ways to securely exchange their data and consume external data to foster data-driven innovations. Historically, organizations have leveraged data sharing solutions to share data with their partners and relied on mutual trust to preserve data privacy. But the organizations relinquish control over the data once it is shared and have little to no visibility into how data is consumed by their partners across various platforms. This exposes potential data misuse and data privacy breaches. With stringent data privacy regulations, it is imperative for organizations to have control and visibility into how their sensitive data is consumed. As a result, organizations need a secure, controlled and private way to collaborate on data, and this is where data cleanrooms come into the picture.

Read on to learn more about how this all works. It’s definitely a lot better than sending off a bunch of CSVs…

Comments closed

Unicode Character Generation in Power Query

Meagan Longoria needs more Unicode:

You may have used the UNICHAR() function in DAX to return Unicode characters in DAX measures. If you haven’t yet read Chris Webb’s blog post on the topic, I recommend you do. But did you know there is a Power Query function that can return Unicode characters? This can be useful in cases when you want to assign a Unicode character to a categorical value.

Click through to see how this works.

Comments closed

Data Governance in Databricks with Unity Catalog

Paul Roome, et al, announce the upcoming GA for Databricks Unity Catalog:

Today we are excited to announce that Unity Catalog, a unified governance solution for all data assets on the Lakehouse, will be generally available on AWS and Azure in the upcoming weeks. Currently, you can apply for a public preview or reach out to a member of your Databricks account team.

In a previous blog, we set out our vision for a governed lakehouse and how Unity Catalog can help customers simplify governance at scale. This blog will explore the most recent updates to Unity Catalog and our growing partner ecosystem.

Click through for those updates and to sign up for the public preview if so inclined.

Comments closed

PHI De-Identification in Databricks with NLP

Amir Kermany, et al, share a set of notebooks:

John Snow Labs, the leader in Healthcare natural language processing (NLP), and Databricks are working together to help organizations process and analyze their text data at scale with a series of Solution Accelerator notebook templates for common NLP use cases. You can learn more about our partnership in our previous blog, Applying Natural Language Processing to Health Text at Scale.

To help organizations automate the removal of sensitive patient information, we built a joint Solution Accelerator for PHI removal that builds on top of the Databricks Lakehouse for Healthcare and Life Sciences. John Snow Labs provides two commercial extensions on top of the open-source Spark NLP library — both of which are useful for de-identification and anonymization tasks — that are used in this Accelerator:

This is a really interesting scenario.

Comments closed

Example Data Pre-Processing Activities

Aayush Srivastava takes us through some pre-processing activities in machine learning:

After selecting the raw data for ML training, the most important task is data pre-processing. In broad sense, data preprocessing will convert the selected data into a form we can work with or can feed to ML algorithms. We always need to preprocess our data so that it can be as per the expectation of machine learning algorithm

Read on for examples of pre-processing steps and how pre-processing differs from data cleaning.

Comments closed