Drew Furgiuele has the need for speed:
Since compute and storage are now separated, this means that any time you want to work with your data, you need some form of compute engine that is capable of connecting to and reading your data from your storage locations. Compute engines vary, but one of the best is Apache Spark, which gives you a great distributed compute layer suitable for all sorts of workloads, whether they be analytical and ad-hoc queries, dashboard or BI workloads, data engineering related, or even data science or AI/ML use cases. It really can do it all, and it does it very well.
But what about use operational use cases? For instance: let’s say your Lakehouse is hosting some data that is critical to customer-facing systems that demand low-latency response times, such as real-time users lookups, API interfaces, or event-driven systems, sometimes the overhead required to take a query, schedule it, and run it can be in the hundreds of milliseconds. For some workloads, that’s a lifetime.
Read on to see how you can build a caching layer on top of certain lakehouse operations when some operation needs to be as fast as possible.