Press "Enter" to skip to content

Visualizing Data in Python

Mark Litwintschik provides some recommendations:

There are two major phases of data analysis. The first is building up a basic understanding of a new dataset. Once this is done there is a second phase of understanding what’s changing over time and if there are any new outliers.

For the first phase, I find Tableau to be more productive than writing code in a Jupyter Notebook. For the second phase, I like to build periotic Airflow jobs that send charts and Excel files to operational channels on Slack. These are formatted to be mobile-friendly and allow me to do more of my work on a phone rather than being chained to a laptop. This also means access is controlled via Slack rather than a custom web app.

Mark also covers some examples with Altair.

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.