Brendan Tierney looks at the pycaret library:
In this post we will have a look at using the AutoML feature in theĀ Pycaret Python library. AutoML is a popular topic and allows Data Scientists and Machine Learning people to develop potentially optimized models based on their data. All requiring the minimum of input from the Data Scientist. As with all AutoML solutions, care is needed on the eventual use of these models. With various ML and AI Legal requirements around the World, it might not be possible to use the output from AutoML in production. But instead, gives the Data Scientists guidance on creating an optimized model, which can then be deployed in production. This facilitates requirements around model explainability, transparency, human oversight, fairness, risk mitigation and human in the loop.
Read on for a tutorial as well as additional resources.