Patterns for ML Models in Production

Jeff Fletcher shows four patterns for productionalizing Machine Learning models, as well as some things to take care of once you’re in production:

Operational Databases
This option is sometimes considered to be  real-time as the information is provided “as its needed,” but it is still a batch method. Using our telco example, a batch process can be run at night that will make a prediction for each customer, and an operational database is updated with the most recent prediction. The call center agent software can then fetch this prediction for the customer when they call in, and the agent can take action accordingly.

Read on for more.

Related Posts

Key Concepts of Convolutional Neural Networks

Srinija Sirobhushanam takes us through some of the key concepts around convolutional neural networks: How are convolution layer operations useful?CNN helps us look for specific localized image features like the edges in the image that we can use later in the network Initial layers to detect simple patterns, such as horizontal and vertical edges in […]

Read More

LSTM in Databricks

Vedant Jain shows us an example of solving a multivariate time series forecasting problem using LSTM networks: LSTM is a type of Recurrent Neural Network (RNN) that allows the network to retain long-term dependencies at a given time from many timesteps before. RNNs were designed to that effect using a simple feedback approach for neurons where the […]

Read More

Categories

June 2019
MTWTFSS
« May Jul »
 12
3456789
10111213141516
17181920212223
24252627282930