MLflow 1.0 Released

Clemens Mewald and Matei Zaharia announce the release of MLflow 1.0:

Today we are excited to announce the release of MLflow 1.0. Since its launch one year ago, MLflow has been deployed at thousands of organizations to manage their production machine learning workloads, and has become generally available on services like Managed MLflow on Databricks. The MLflow community has grown to over 100 contributors, and the MLflow PyPI package download rate has reached close to 600K times a month. The 1.0 release not only marks the maturity and stability of the APIs, but also adds a number of frequently requested features and improvements.

The release is publicly available starting today. Install MLflow 1.0 using PyPl, read our documentation to get started, and provide feedback on GitHub. Below we describe just a few of the new features in MLflow 1.0. Please refer to the release notes for a full list.

And it looks like they’re going to keep pushing on it from there.

Related Posts

Calculating YARN Utilization Metrics

Dmitry Tolpeko shows how you can calculate per-second cluster utilization measures from YARN’s resource manager logs: But even if you query YARN REST API every second it still can only provide a snapshot of the used YARN resources. It does not show which application allocates or releases containers, their memory and CPU capacity, in which […]

Read More

Spark Streaming DStreams

Manish Mishra explains the fundamental abstraction of Spark Streaming: Before going into details of the operations available on the DStream API, let us look at the input sources from which we can start a Stream. There are multiple ways in which we can get the inputs from e.g. Kafka, Flume, etc. Or simple Idle files. […]

Read More

Categories

June 2019
MTWTFSS
« May Jul »
 12
3456789
10111213141516
17181920212223
24252627282930