Creating Models with ML.NET

I have a series on ML.NET; in this post, I look at building a model:

Okay, now that I have classes, I need to put in that lambda. I guess the lambda could change to qb => qb.Quarterback == "Josh Allen" ? "Josh Allen" : "Nate Barkerson" and that’d work except for one itsy-bitsy thing: if I do it the easy way, I can’t actually save and reload my model. Which makes it worthless for pretty much any real-world scenario.

So no easy lambda-based solution for us. Instead, we need a delegate. 

The experience so far has been a bit frustrating compared to doing similar work in R, but they’re actively working on the library, so I’m hopeful that there will be improvements. In the meantime, I’ve landed on the idea of doing all data cleanup work outside of ML.NET and just use the simplest transformations.

Related Posts

Spark for .NET Developers

Ed Elliott has a long-form post covering spark-dotnet: The .NET driver is made up of two parts, and the first part is a Java JAR file which is loaded by Spark and then runs the .NET application. The second part of the .NET driver runs in the process and acts as a proxy between the […]

Read More

Performance Tuning Neural Network Training

Sean Owen takes us through a few techniques for speeding up neural network model training: Step #2: Use Early StoppingKeras (and other frameworks) have built-in support for stopping when further training appears to be making the model worse. In Keras, it’s the EarlyStopping callback. Using it means passing the validation data to the training process for evaluation […]

Read More

Categories

June 2019
MTWTFSS
« May Jul »
 12
3456789
10111213141516
17181920212223
24252627282930