Linear Programming in Python

Francisco Alvarez shows us an example of linear programming in Python:

The first two constraints, x1 ≥ 0 and x2 ≥ 0 are called nonnegativity constraints. The other constraints are then called the main constraints. The function to be maximized (or minimized) is called the objective function. Here, the objective function is x1 + x2.

Two classes of problems, called here the standard maximum problem and the standard minimum problem, play a special role. In these problems, all variables are constrained to be nonnegative, and all main constraints are inequalities.

That post spurred me on to look up LINGO and see that it’s actually still around.

Related Posts

Linear Regression Assumptions

Stephanie Glen has a chart which explains the four key assumptions behind when Ordinary Least Squares is the Best Linear Unbiased Estimator: If any of the main assumptions of linear regression are violated, any results or forecasts that you glean from your data will be extremely biased, inefficient or misleading. Navigating all of the different assumptions […]

Read More

Monte Carlo Simulation in Python

Kristian Larsen has a couple of posts on Monte Carlo style simulation in Python. First up is a post which covers how to generate data from different distributions: One method that is very useful for data scientist/data analysts in order to validate methods or data is Monte Carlo simulation. In this article, you learn how […]

Read More


May 2019
« Apr Jun »