Timing R Function Calls

Kevin Feasel



Colin Gillespie shows off an R package for benchmarking:

Of course, it’s more likely that you’ll want to compare more than two things. You can compare as many function calls as you want with mark(), as we’ll demonstrate in the following example. It’s probably more likely that you’ll want to compare these function calls against more than one value. For example, in the digest package there are eight different algorithms. Ranging from the standard md5 to the newer xxhash64 methods. To compare times, we’ll generate n = 20 random character strings of length N = 10,000. This can all be wrapped up in the single function press() function call from the bench package:

Click through for an example involving hashing algorithms.

Related Posts

Using Cohen’s D for Experiments

Nina Zumel takes us through Cohen’s D, a useful tool for determining effect sizes in experiments: Cohen’s d is a measure of effect size for the difference of two means that takes the variance of the population into account. It’s defined asd = | μ1 – μ2 | / σpooledwhere σpooled is the pooled standard deviation over both cohorts. […]

Read More

Comparing Iterator Performance in R

Ulrik Stervbo has a performance comparison for for, apply, and map functions in R: It is usually said, that for– and while-loops should be avoided in R. I was curious about just how the different alternatives compare in terms of speed. The first loop is perhaps the worst I can think of – the return vector is […]

Read More


May 2019
« Apr Jun »