Learning with Limited Data

Shioulin Sam and Nisha Muktewar have new research on machine learning when getting labeled data is time-consuming or difficult:

We are excited to release Learning with Limited Labeled Data, the latest report and prototype from Cloudera Fast Forward Labs.

Being able to learn with limited labeled data relaxes the stringent labeled data requirement for supervised machine learning. Our report focuses on active learning, a technique that relies on collaboration between machines and humans to label smartly.

Active learning makes it possible to build applications using a small set of labeled data, and enables enterprises to leverage their large pools of unlabeled data. In this blog post, we explore how active learning works. (For a higher level introduction, please see our previous blogpost.

The research itself is behind a paywall but you can see their write-up to get an idea of the topic.

Related Posts

Forensic Accounting: Cohort Analysis

I continue my series on forensic accounting techniques with cohort analysis: In the last post, we focused on high-level aggregates to gain a basic understanding of our data. We saw some suspicious results but couldn’t say much more than “This looks weird” due to our level of aggregation. In this post, I want to dig […]

Read More

Bayes’ Theorem In A Picture

Stephanie Glen gives us the basics of Bayes’ Theorem in a picture: Bayes’ Theorem is a way to calculate conditional probability. The formula is very simple to calculate, but it can be challenging to fit the right pieces into the puzzle. The first challenge comes from defining your event (A) and test (B); The second […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

April 2019
MTWTFSS
« Mar  
1234567
891011121314
15161718192021
22232425262728
2930