Solving Logistic Regression Problems with Python

Hardik Jaroli shows how we can solve logistic regression problems using Python, using the Titanic data set as an example:

We will be working with the Titanic Data Set from Kaggle. We’ll be trying to predict a classification- survival or deceased.

Let’s begin by implementing Logistic Regression in Python for classification. We’ll use a “semi-cleaned” version of the titanic data set, if you use the data set hosted directly on Kaggle, you may need to do some additional cleaning.

Click through for the demo.

Related Posts

Forensic Accounting: Cohort Analysis

I continue my series on forensic accounting techniques with cohort analysis: In the last post, we focused on high-level aggregates to gain a basic understanding of our data. We saw some suspicious results but couldn’t say much more than “This looks weird” due to our level of aggregation. In this post, I want to dig […]

Read More

Bayes’ Theorem In A Picture

Stephanie Glen gives us the basics of Bayes’ Theorem in a picture: Bayes’ Theorem is a way to calculate conditional probability. The formula is very simple to calculate, but it can be challenging to fit the right pieces into the puzzle. The first challenge comes from defining your event (A) and test (B); The second […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

April 2019
MTWTFSS
« Mar  
1234567
891011121314
15161718192021
22232425262728
2930