Querying Apache Druid

Manish Mishra takes us through the basics of querying from Apache Druid:

I would not mind quoting the Druid documentation for this purpose:  “Druid is a data store designed for high-performance slice-and-dice analytics (“OLAP“-style) on large data sets. Druid is most often used as a data store for powering GUI analytical applications, or as a backend for highly-concurrent APIs that need fast aggregations.”

You might be wondering where is “SQL” in that? Actually, the fact is Druid is designed for special kind of SQL workloads which we can relate with powering the GUI analytical applications which require low latency query response. But in this post, we will only look in the “how part” of it using Druid to quickly run queries.

Click through to see how.

Related Posts

Time Travel in Snowflake

Koen Verbeeck shows an interesting feature in Snowflake: Time travel in Snowflake is similar to temporal tables in SQL Server: it allows you to query the history rows of a table. If you delete or update some rows, you can retrieve the status of the table at the point in time before you executed that […]

Read More

Pivoting Spark DataFrames

Unmesha Sreeveni shows how we can pivot a DataFrame in Apache Spark using one line of code: A pivot can be thought of as translating rows into columns while applying one or more aggregations. Lets see how we can achieve the same using the above dataframe. We will pivot the data based on “Item” column. […]

Read More


April 2019
« Mar