Reza Rad explains why it makes sense to build flat dimensional models, particularly for Power BI:
The article that I wrote earlier this week about the shared dimension had a lot of interest, and I’m glad it helped many of you. So I thought better to write about the basics of modeling even more. In this article, I will be focusing on a scenario that you have all faced, however, took different approaches. Is it good to have too many dimension tables? can you combine some of those tables together to build one flatten dimension table? how much should you flatten it? should you end up with one huge table including everything? In this article, I’m answering all of these questions and explaining the scenarios of combining dimensions, as usual, I explain the model in Power BI. However, the concepts are applicable to any other tools. If you like to learn more about Power BI; read Power BI book from Rookie to Rock Star.
Given how closely the ideal Power BI data model matches the Kimball model, Reza’s advice makes perfect sense.
Comments closed