Flattening Dimensional Models

Reza Rad explains why it makes sense to build flat dimensional models, particularly for Power BI:

The article that I wrote earlier this week about the shared dimension had a lot of interest, and I’m glad it helped many of you. So I thought better to write about the basics of modeling even more. In this article, I will be focusing on a scenario that you have all faced, however, took different approaches. Is it good to have too many dimension tables? can you combine some of those tables together to build one flatten dimension table? how much should you flatten it? should you end up with one huge table including everything? In this article, I’m answering all of these questions and explaining the scenarios of combining dimensions, as usual, I explain the model in Power BI. However, the concepts are applicable to any other tools. If you like to learn more about Power BI; read Power BI book from Rookie to Rock Star.

Given how closely the ideal Power BI data model matches the Kimball model, Reza’s advice makes perfect sense.

Related Posts

Custom Power BI Date and Time Formats

Chris Webb continues a series on Power BI custom formats: In my last post I showed lots of examples of how Power BI’s new custom format string feature can be used to format numbers. This post, looking at dates and times, will be a bit different for two reasons: there are a lot more useful examples of […]

Read More

Strong and Weak Power BI Relationships

Alberto Ferrari takes us through the two different kinds of relationships in Power BI: A relationship in a Tabular model can be strong or weak. In a strong relationship the engine knows that the one-side of the relationship contains unique values. If the engine cannot ensure that the one-side of the relationship contains unique values for the key, then the […]

Read More


March 2019
« Feb Apr »