Flink and Stateful Streaming

Himanshu Gupta explains some of the benefits Apache Flink offers for stateful streaming applicatons:

The 2 main types of stream processing done are:
1. Stateless: Where every event is handled completely independent from the preceding events.
2. Stateful: Where a “state” is shared between events and therefore past events can influence the way current events are processed.

Stateless stream processing is easy to scale up because events are processed independently. But Stateful stream processing is difficult to scale up because the “state” needs to be shared across the events.

Himanshu does point out alternatives, but this isn’t a comparison exercise.

Related Posts

Comparing Performance: HBase1 vs HBase2

Surbhi Kochhar takes us through performance improvements between HBase version 1 and HBase version 2: We are loading the YCSB dataset with 1000,000,000 records with each record 1KB in size, creating total 1TB of data. After loading, we wait for all compaction operations to finish before starting workload test. Each workload tested was run 3 […]

Read More

The Transaction Log in Delta Tables

Burak Yavuz, et al, explain how the transaction log works with Delta Tables in Apache Spark: When a user creates a Delta Lake table, that table’s transaction log is automatically created in the _delta_log subdirectory. As he or she makes changes to that table, those changes are recorded as ordered, atomic commits in the transaction log. Each commit […]

Read More

Categories

March 2019
MTWTFSS
« Feb Apr »
 123
45678910
11121314151617
18192021222324
25262728293031