Database-First or Kafka-First for Event Streaming

Gwen Shapiro takes us through a scenario where database-first writes for event streaming makes the most sense:

Note that the DB does quite a lot for you: it enforces serializability, locks, your logical constraints, etc. If the DB is distributed (Vitesse, Cockroach, Spanner, Yugabyte), it does even more.

If you were to go Kafka-first… well, it isn’t impossible. But all those responsibilities now belong to you as a developer. And if you are thinking there may be multiple webservers handling user requests and passing them to Kafka, you have to solve fairly challenging problems.

Read the whole thing.

Related Posts

Pivoting Spark DataFrames

Unmesha Sreeveni shows how we can pivot a DataFrame in Apache Spark using one line of code: A pivot can be thought of as translating rows into columns while applying one or more aggregations. Lets see how we can achieve the same using the above dataframe. We will pivot the data based on “Item” column. […]

Read More

Troubleshooting Spark Performance

Bikas Saha and Mridul Murlidharan explain some of the basics of performance tuning with Apache Spark: Our objective was to build a system that would provide an intuitive insight into Spark jobs that not just provides visibility but also codifies the best practices and deep experience we have gained after years of debugging and optimizing […]

Read More

Categories

March 2019
MTWTFSS
« Feb Apr »
 123
45678910
11121314151617
18192021222324
25262728293031