Building Credit Scorecards

Andre Violante uses SAS to build credit scorecards and analyze credit data:

For this analysis I’m using the SAS Open Source library called SWAT (Scripting Wrapper for Analytics Transfer) to code in Python and execute SAS CAS Action Sets. SWAT acts as a bridge between the python language to CAS Action Sets. CAS Action Sets are synonymous to libraries in Python or packages in R. The one main difference and benefit is that the algorithms within these action sets have been highly parallelized to run on a CAS (Cloud Analytic Services) server. The CAS server is a distributed in-memory engine where I can do all my heavy lifting or computations. The code and Jupyter Notebook are available on GitHub.

Click through for the analysis.

Related Posts

The Zen Of Airflow

Bas Harenslak shows how you can think of The Zen of Python as it applies to Apache Airflow: Apache Airflow is a Python framework for programmatically creating workflows in DAGs, e.g. ETL processes, generating reports, and retraining models on a daily basis. This allows for concise and flexible scripts but can also be the downside of […]

Read More

Conjoint Analysis In R

Abhijit Telang introduces the concept of conjoint analysis and shows how you can implement this in R: We will need to typically transform the problem of utility modeling from its intangible, abstract form to something that is measurable. That is, we wish to assign a numeric value to the perceived utility by the consumer, and […]

Read More

Categories

January 2019
MTWTFSS
« Dec Feb »
 123456
78910111213
14151617181920
21222324252627
28293031