Srinath Shankar and Todd Greenstein announce a new feature in Databricks Runtime 5.1:
We can see that there are no libraries installed and scoped specifically to this notebook. Now I’m going to install a later version of SciPy, restart the python interpreter, and then run that same helper function we ran previously to list any libraries installed and scoped specifically to this notebook session. When using the list() function PyPI libraries scoped to this notebook session are displayed as <library_name>-<version_number>-<repo>, and (empty) indicates that the corresponding part has no specification. This also works with wheel and egg install artifacts, but for the sake of this example we’ll just be installing the single package directly.
This does seem easier than dropping to a shell and installing with Pip, especially if you need different versions of libraries.