MLflow 0.8.1 Released

Aaron Davidson, et al, announce a new version of Databricks MLflow:

When scoring Python models as Apache Spark UDFs, users can now filter UDF outputs by selecting from an expanded set of result types. For example, specifying a result type of pyspark.sql.types.DoubleType filters the UDF output and returns the first column that contains double precision scalar values. Specifying a result type of pyspark.sql.types.ArrayType(DoubleType) returns all columns that contain double precision scalar values. The example code below demonstrates result type selection using the result_type parameter. And the short example notebook illustrates Spark Model logged and then loaded as a Spark UDF.

Read on for a pretty long list of updates.

Related Posts

An Explanation Of Convolutional Neural Networks

Shirin Glander explains some of the mechanics behind Convolutional Neural Networks: Convolutional Neural Nets are usually abbreviated either CNNs or ConvNets. They are a specific type of neural network that has very particular differences compared to MLPs. Basically, you can think of CNNs as working similarly to the receptive fields of photoreceptors in the human eye. Receptive fields in our […]

Read More

Testing Kafka Streams Applications

Yeva Byzek continues her series on testing Kafka-based streaming applications: When you create a stream processing application with Kafka’s Streams API, you create a Topologyeither using the StreamsBuilder DSL or the low-level Processor API. Normally, the topology runs with the KafkaStreams class, which connects to a Kafka cluster and begins processing when you call start(). For testing though, connecting to a running […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

December 2018
MTWTFSS
« Nov Jan »
 12
3456789
10111213141516
17181920212223
24252627282930
31