Executing Python Code In Power BI

Brad Llewellyn shows how to build a visual based on a Python script using Power BI:

Now that we’ve seen our data, it’s a relatively simple task to convert the R script to a Python script. There are a few major differences. First, Python is a general purpose programming language, whereas R is a statistical programming language. This means that some of the functionality provided in Base R requires additional libraries in Python. Pandas is a good library for data manipulation, but is already included by default in Power BI. Scikit-learn (also known as sklearn) is a good library for build predictive models. Finally, Seaborn and Matplotlib are good libraries for creating data visualizations.

In addition, there are some scenarios where Python is a bit more verbose than R, resulting in additional coding to achieve the same result. For instance, fitting a regression line to our data using the sklearn.linear_model.LinearRegression().fit() function required much more coding than the corresponding lm() function in R. Of course, there are plenty of situations where the opposite is true and R becomes the more verbose language.

Click through for the full example.

Related Posts

Linear Regression Assumptions

Stephanie Glen has a chart which explains the four key assumptions behind when Ordinary Least Squares is the Best Linear Unbiased Estimator: If any of the main assumptions of linear regression are violated, any results or forecasts that you glean from your data will be extremely biased,¬†inefficient or misleading. Navigating all of the different assumptions […]

Read More

Create Reports in Power BI Desktop Instead of Service

Melissa Coates explains why you should create reports in Power BI Desktop rather than directly through the Power BI Service: I always recommend to Power BI authors that report creation & editing should happen in Power BI Desktop and to just ignore the edit capability in the Power BI Service. Usually my reasons are concerned […]

Read More

Categories

December 2018
MTWTFSS
« Nov Jan »
 12
3456789
10111213141516
17181920212223
24252627282930
31