Apache Samza At 1.0

Jagadish Venkatraman announces Apache Samza 1.0:

We are pleased to announce today the release of Samza 1.0, a significant milestone in the history of the project. Apache Samza is a distributed stream processing framework that we developed at LinkedIn in 2013. Samza became a top-level Apache project in 2014. Fast-forward to 2018, and we currently have over 3,000 applications in production leveraging Samza at LinkedIn. The use-cases include detecting anomalies, combating fraud, monitoring performance, notifications, real-time analytics, and many more. Today, Samza integrates not only with Apache Kafka, but also with many other systems, including Azure EventHubsAmazon Kinesis, HDFS, ElasticSearch, and Brooklin. Multiple companies like Slack, TripAdvisor, eBay, and Optimizely have adopted Samza.

We view Samza 1.0 as a step towards our vision of making stream processing universally accessible. In this post, we describe our journey in building and scaling a distributed stream processing system. We also present the key features in Samza 1.0: a rich high-level API, event-time-based processing, integration with Apache Beam, Samza SQL, a standalone mode to run Samza without YARN, and a new test framework for Samza applications.

This runs in the same space as Spark Streaming, Flink, and Kafka Streams, so there are plenty of competitors and a lot of innovation.

Related Posts

What’s New In Ambari 2.7

Paul Codding and Kat Petre share some of the new features in Ambari 2.7: With this release, we wanted to make Ambari more enjoyable to use every day, simplify finding and using our API, and unblock teams managing very large clusters.  Here is a preview of a few features we’re excited to share with you:Revamped […]

Read More

Working With Images In Spark 2.4

Tomas Nykodym and Weichen Xu give us an update on working with images in the most recent version of Apache Spark: An image data source addresses many of these problems by providing the standard representation you can code against and abstracts from the details of a particular image representation.Apache Spark 2.3 provided the ImageSchema.readImages API (see Microsoft’s post […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

November 2018
MTWTFSS
« Oct Dec »
 1234
567891011
12131415161718
19202122232425
2627282930