Building A Convolutional Neural Network With TensorFlow

Anirudh Rao walks us through Convolutional Neural Networks in TensorFlow:

What Are Convolutional Neural Networks?

Convolutional Neural Networks, like neural networks, are made up of neurons with learnable weights and biases. Each neuron receives several inputs, takes a weighted sum over them, pass it through an activation function and responds with an output.

The whole network has a loss function and all the tips and tricks that we developed for neural networks still apply on Convolutional Neural Networks.

Pretty straightforward, right?

Neural networks, as its name suggests, is a machine learning technique which is modeled after the brain structure. It comprises of a network of learning units called neurons.

These neurons learn how to convert input signals (e.g. picture of a cat) into corresponding output signals (e.g. the label “cat”), forming the basis of automated recognition.

Let’s take the example of automatic image recognition. The process of determining whether a picture contains a cat involves an activation function. If the picture resembles prior cat images the neurons have seen before, the label “cat” would be activated.

Hence, the more labeled images the neurons are exposed to, the better it learns how to recognize other unlabelled images. We call this the process of training neurons.

I (finally) finished chapter 5 of Deep Learning in R, which is all about CNNs.  It’s interesting just how open CNNs are for post hoc understanding, totally at odds with the classic neural network reputation for being a black box full of dark magic.

Related Posts

Accessing Azure Event Hubs with Python

Neil Gelder shows us how you can write Python code to work with Azure Event Hubs: I’ve supplied these two python scripts in my github repo at the following link. First we need to open the install the relevant python libraries so you’ll need to issue the below pip command in whatever command tool you use, […]

Read More

Power BI AutoML

Teo Lachev takes a look at AutoML in Power BI: Let’s see how AutoML works based on what’s in the private preview (the usual disclaimer is that things will probably change). To start with, AutoML requires a dataflow (a note to Microsoft here is that AutoML will become more pervasive if it’s available in Power […]

Read More


November 2018
« Oct Dec »