A Pessimistic View Of The State Of Deep Learning

William Vorhies provides us a negative (and necessary) look at the current state of Deep Learning solutions:

Reinforcement Learning (RL) is arguably the hottest research area in AI today because it appears RL can be adapted to any problem that has a well-defined reward function.  That encompasses game play, robotics, self-driving cars, and frankly pretty much else in machine learning.

Within RL, the hottest research area is Deep RL which means using a deep neural net as the ‘agent’ in the training.  Deep RL is seen as the form of RL with the most potential to generalize over the largest number of cases and perhaps the closest we’ve yet come to AGI (artificial general intelligence).

Importantly, Deep RL is also the technique used to win at Alpha Go which brought it huge attention.

The problem is, according to Alex Irpan, a researcher on the Google Brain Robotics team that about 70% of the time they just don’t work.

Alex has written a very comprehensive article critiquing the current state of Deep RL, the field with which he engages on a day-to-day basis.  He lays out a whole series of problems and we’ve elected to focus on the three that most clearly illustrate the current state of the problem with notes from his work.

Vorhies is not unduly negative and is optimistic in the medium to long term, but he is right in noting that there is a lot of work yet to do in this field.

Related Posts

Patterns for ML Models in Production

Jeff Fletcher shows four patterns for productionalizing Machine Learning models, as well as some things to take care of once you’re in production: Operational DatabasesThis option is sometimes considered to be  real-time as the information is provided “as its needed,” but it is still a batch method. Using our telco example, a batch process can […]

Read More

Hyperparameter Tuning with MLflow

Joseph Bradley shows how you can perform hyperparameter tuning of an MLlib model with MLflow: Apache Spark MLlib users often tune hyperparameters using MLlib’s built-in tools CrossValidator and TrainValidationSplit.  These use grid search to try out a user-specified set of hyperparameter values; see the Spark docs on tuning for more info. Databricks Runtime 5.3 and 5.3 ML and above support […]

Read More

Categories

November 2018
MTWTFSS
« Oct Dec »
 1234
567891011
12131415161718
19202122232425
2627282930