Using Microsoft Flow To Find Power BI Data Sources In Use

Chris Webb continues his series on using Microsoft Flow to extend Power BI:

The problem with self-service BI is that you never quite know what your users are up to. For example, what data sources are they using? Are there hundreds of Excel files being used as data sources for reports that you don’t know about? If so, where are they? Could they and should they be replaced by a database or something else more robust? In this post I’ll show you how you can use Microsoft Flow and the Power BI REST API (see part 1 to find out how to create a Flow custom connector to call the Power BI API) to get the details of all the data sources used in all of the workspaces of your Power BI tenant.

I’ll admit that doing this turned out to be a bit trickier than I had expected. My plan was to use the GetDatasetsAsAdmin endpoint to get a list of all datasets, loop over each one and then call the (undocumented, but in the REST API’s Swagger file and therefore in my custom connector) GetDatsourcesAsAdmin endpoint to get the datasources in each dataset. Both these endpoints require administrative permissions to call, so I made sure my custom connector had the correct permissions (at least Tenant.Read.All – you can check this in the Azure Portal on the app you registered in Azure Active Directory) and I ran the Flow as a user with Power BI Admin permissions. But I kept getting 404 errors when requesting the data sources for certain datasets .

Chris explains why those 404s appear and what you can do about them.

Related Posts

Controlling Azure Services In R With AzureR

Hong Ooi announces a new set of packages called AzureR: As background, some of you may remember the AzureSMR package, which was written a few years back as an R interface to Azure. AzureSMR was very successful and gained a significant number of users, but it was never meant to be maintainable in the long term. As […]

Read More

Azure Databricks Geospatial Analysis

Jose Mendes gives us an example of using Azure Databricks to perform geospatial analysis: Magellan is a distributed execution engine for geospatial analytics on big data. It is implemented on top of Apache Spark and deeply leverages modern database techniques like efficient data layout, code generation and query optimization in order to optimize geospatial queries […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

November 2018
MTWTFSS
« Oct  
 1234
567891011
12131415161718
19202122232425
2627282930