Reshaping Data Frames With tidyr

Kevin Feasel

2018-10-23

R

Anisa Dhana shows off some of the data reshaping functionality available in the tidyr package:

As it is shown above, the variable agegp has 6 groups (i.e., 25-34, 35-44) which has different alcohol intake and smoking use combinations. I think it would be interesting to transform this dataset from long to wide and to create a column for each age group and show the respective cases. Let see how the dataset will look like.

dt %>% spread(agegp, ncases) %>% slice(1:5)

Click through for a few additional transformations.

Related Posts

The Lesser-Known Apply Functions In R

Andrew Treadway covers a few of the lesser-known apply functions in R: rapply Let’s start with rapply. This function has a couple of different purposes. One is to recursively apply a function to a list. We’ll get to that in a moment. The other use of rapply is to a apply a function to only those elements in […]

Read More

Controlling Azure Services In R With AzureR

Hong Ooi announces a new set of packages called AzureR: As background, some of you may remember the AzureSMR package, which was written a few years back as an R interface to Azure. AzureSMR was very successful and gained a significant number of users, but it was never meant to be maintainable in the long term. As […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031