Multi-Threaded R With Microsoft R Client

David Parr shows us how to get started with Microsoft R Client and performs some quick benchmarking:

This message will pop up, and it’s worth noting as it’s got some information in it that you might need to think about:

  • It’s worth noting that right now Microsoft r Client is lagging behind the current R version, and is based on version 3.4 of R, not 3.5. This will mean your default package libraries will not be shared between the installations if you are running R 3.5.

  • It’s using a snapshot of CRAN called MRAN to source packages by default. 90% of the time it will operate just as you expect, but because it takes a ‘snapshot’ of packages, newer features and changes that have hit CRAN may not be in the version of the package you are grabbing.

    • RevoScaleR and probably the ggplot2 and dplyr packages will likely be installed for you already as default in Microsoft R Client. The other two you will probably have to install yourself.
  • Intel MKL will have scanned your system on install and attempted to work out how many cores your processor has. Here it’s identified 2 on my old Lenovo Yoga. This is where the speed boost will come from.

I had an old two-core Lenovo Yoga too, so this article really spoke to me.

Related Posts

Data Science And Data Engineering In HDP 3.0

Saumitra Buragohain, et al, show off some of the things added to the Hortonworks Data Platform for data scientists and data engineers: We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different […]

Read More

Using wrapr For A Consistent Pipe With ggplot2

John Mount shows how you can use the wrapr pipe to perform data processing and building a ggplot2 visual: Now we can run a single pipeline that combines data processing steps and ggplot plot construction. data.frame(x = 1:20) %.>% mutate(., y = cos(3*x)) %.>% ggplot(., aes(x = x, y = y)) %.>% geom_point() %.>% geom_line() %.>% ggtitle("piped ggplot2") Check […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

October 2018
MTWTFSS
« Sep  
1234567
891011121314
15161718192021
22232425262728
293031