Building Observable Distributed Systems

Kevin Sookocheff has some thoughts on building observable systems:

Given the shortcomings of monitoring and testing, we should shift focus to building observable systems. This means treating observability of system behaviour as a primary feature of the system being built, and integrating this feature into how we design, build, test, and maintain our systems. This also means acknowledging that the ease with which we can debug our production environment will be a key indicator of system reliability, scalability, and ultimately customer experience. Designing a system to be observable requires effort from three disciplines of software development: development, testing, and operations. None of these disciplines is more important than the others, and the sum of them is greater than the value of the individual parts. Let’s take some time to look at each discipline in more detail, with a focus on observability.

My struggle has never been with the concept, but rather with getting the implementation details right.  “Make everything observable” is great until you run out of disk space because you’re logging everything.

Related Posts

Machine Learning and Delta Lake

Brenner Heintz and Denny Lee walk us through solving data engineering problems with Delta Lake: As a result, companies tend to have a lot of raw, unstructured data that they’ve collected from various sources sitting stagnant in data lakes. Without a way to reliably combine historical data with real-time streaming data, and add structure to […]

Read More

Proving ETL Correctness

Ed Elliott shares a few techniques for testing ETL processes: Reconciliation is the process of going to your source system, getting a number and validating that number on the target. This ranges from being easy to impossible, so you need to decide what to reconcile on a case by case basis. In its simplest form, […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031