Joining Streams Of Data

Chuck Blake gives an example of joining two streams of data together in Wallaroo:

The joining event streams pattern takes multiple data pipelines and joins them to produce a new signal message that can be acted upon by a later process.

This pattern can is used in a variety of use cases. Here are a few examples:

  • Merging data for an individual across a variety of social media accounts.

  • Merging click data from a variety of devices (e.g. mobile and desktop) for an individual user.

  • Tracking locations of delivery vehicles and assets that need to be delivered.

  • Monitoring electronic trading activity for clients on a variety of trading venues.

Conceptually, it’s very similar to normal join operations, but there is a time element which complicates things.

Related Posts

Last-Click Attribution With Databricks Delta

Caryl Yuhas and Denny Lee give us an example of building a last-click digital marketing attribution model with Databricks Delta: The first thing we will need to do is to establish the impression and conversion data streams.   The impression data stream provides us a real-time view of the attributes associated with those customers who were served the […]

Read More

Databricks Delta: Data Skipping And ZORDER Clustering

Adrian Ionescu explains a couple of concepts which can help make selective queries with Databricks much faster: The general use-case for these features is to improve the performance of needle-in-the-haystack kind of queries against huge data sets. The typical RDBMS solution, namely secondary indexes, is not practical in a big data context due to scalability […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

August 2018
MTWTFSS
« Jul  
 12345
6789101112
13141516171819
20212223242526
2728293031