The Basics Of RDDs In Apache Spark

Anmol Sarna walks us through some of the basics of Resilient Distributed Datasets in Apache Spark:

  • Resilient, i.e. fault-tolerant with the help of RDD lineage graph and so able to recompute missing or damaged partitions due to node failures.

  • Distributed with data residing on multiple nodes in a cluster.

  • Dataset is a collection of partitioned data.

Now we know what RDD stands for. Now let’s try to understand it.

It’s a nice intro to the topic.  And even though there are other data models which sit on top of RDDs to make life easier for developers, it’s still important to understand the core model in Spark.

Related Posts

Hyperparameter Tuning with MLflow

Joseph Bradley shows how you can perform hyperparameter tuning of an MLlib model with MLflow: Apache Spark MLlib users often tune hyperparameters using MLlib’s built-in tools CrossValidator and TrainValidationSplit.  These use grid search to try out a user-specified set of hyperparameter values; see the Spark docs on tuning for more info. Databricks Runtime 5.3 and 5.3 ML and above support […]

Read More

TensorFrames: Spark Plus TensorFlow

Adi Polak gives us an introduction to TensorFrames: In all TensorFrames functionality, the DataFrame is sent together with the computations graph. The DataFrame represents the distributed data, meaning in every machine there is a chunk of the data that will go through the graph operations/ transformations. This will happen in every machine with the relevant […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031