The Basics Of RDDs In Apache Spark

Anmol Sarna walks us through some of the basics of Resilient Distributed Datasets in Apache Spark:

  • Resilient, i.e. fault-tolerant with the help of RDD lineage graph and so able to recompute missing or damaged partitions due to node failures.

  • Distributed with data residing on multiple nodes in a cluster.

  • Dataset is a collection of partitioned data.

Now we know what RDD stands for. Now let’s try to understand it.

It’s a nice intro to the topic.  And even though there are other data models which sit on top of RDDs to make life easier for developers, it’s still important to understand the core model in Spark.

Related Posts

Working With The Databricks API Via Powershell

Gerhard Brueckl has a Powershell module for interacting with Databricks, either Azure or AWS: As most of our deployments use PowerShell I wrote some cmdlets to easily work with the Databricks API in my scripts. These included managing clusters (create, start, stop, …), deploying content/notebooks, adding secrets, executing jobs/notebooks, etc. After some time I ended […]

Read More

Kafka Connect Converters And Serialization

Robin Moffatt goes into great detail on Apache Kafka Connect converters and serialization techniques: Kafka Connect is modular in nature, providing a very powerful way of handling integration requirements. Some key components include: Connectors – the JAR files that define how to integrate with the data store itself Converters – handling serialization and deserialization of […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031