Implementing K Nearest Neighbors In Python

Atul Harsha gives us a demo on k nearest neighbors in Python:

In order to make any predictions, you have to calculate the distance between the new point and the existing points, as you will be needing k closest points.

In this case for calculating the distance, we will use the Euclidean distance. This is defined as theĀ square root of the sum of the squared differences between the two arrays of numbers

Specifically, we need only first 4 attributes(features) for distance calculation as the last attribute is a class label. So for one of the approach is to limit the Euclidean distance to a fixed length, thereby ignoring the final dimension.

Check it out.

Related Posts

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Solving The Monty Hall Problem With R

Miroslav Rajter builds a Monty Hall problem simulator using R: The original and most simple scenario of the Monty Hall problem is this: You are in a prize contest and in front of you there are three doors (A, B and C). Behind one of the doors is a prize (Car), while behind others is […]

Read More


July 2018
« Jun Aug »