Executing ML Services Scripts From Jupyter Notebooks

Kevin Feasel

2018-07-17

Python

Kyle Weller has an inception moment with Python and SQL Server Machine Learning Services:

While this example is trivial with the Iris dataset, imagine the additional scale, performance, and security capabilities that you now unlocked. You can use any of the latest open source R/Python packages to build Deep Learning and AI applications on large amounts of data in SQL Server. We also offer leading edge, high-performance algorithms in Microsoft’s RevoScaleR and RevoScalePy APIs. Using these with the latest innovations in the open source world allows you to bring unparalleled selection, performance, and scale to your applications.

Normally I see examples come straight from SQL Server or maybe C#, but it’s a bit fun to see one originate in Python on order to execute Python in SQL Server.

Related Posts

Comparing TensorFlow Versus PyTorch

Anirudh Rao compares PyTorch to TensorFlow: For small-scale server-side deployments both frameworks are easy to wrap in e.g. a Flask web server. For mobile and embedded deployments, TensorFlow works really well. This is more than what can be said of most other deep learning frameworks including PyTorch. Deploying to Android or iOS does require a non-trivial amount of work in TensorFlow. You don’t have to rewrite the entire inference portion of your model in Java or C++. […]

Read More

What’s New With Machine Learning Services

Niels Berglund looks at SQL Server 2019’s Machine Learning Services offering for updates: So, when I read What’s new in SQL Server 2019, I came across a lot of interesting “stuff”, but one thing that stood out was Java language programmability extensions. In essence, it allows us to execute Java code in SQL Server by using a […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031