Solving A Problem In TensorFlow Using SoftMax

Kiran Gutha gives us a fairly simple solution to the MNIST digit data set using the SoftMax algorithm:

In this tutorial, we will train a machine learning model for predicting numbers in pictures. Our goal is not to design a world-class complex model (although we will give you the source code to implement first-rate predictive models later). Rather, this tutorial is to introduce how to use TensorFlow. So, we start here with a very simple mathematical model called Softmax Regression.

The implementation code for this tutorial is short, and the really interesting content is only contained in three lines of code. However, it is very important to understand the design ideas contained in these codes: the basic concepts of TensorFlow workflow and machine learning. Therefore, this tutorial will explain in detail the implementation of these codes.

This is about as easy as it gets with neural networks, but easy doesn’t mean wrong.

Related Posts

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM¬†integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930