Auto-Encoders And KernelML

Rohan Kotwani gives us an example where KernelML might be better than TensorFlow or PyTorch:

So what’s the point of using KernelML?

1. The parameters in each layer can be non-linear
2. Each parameter can be sampled from a different random distribution
3. The parameters can be transformed to meet certain constraints
4. Network combinations are defined in terms of numpy operations
5. Parameters are probabilistically updated
6. Each parameter update samples the loss function around a local or global minima

KerneML Specs

KernelMLis brute force optimizer that can be used to train machine learning algorithms. The package uses a combination of a machine learning and monte carlo simulations to optimize a parameter vector with a user defined loss function. Using kernelml creates a high computational cost for large complex networks because it samples the loss function using a subspace for each parameter in the parameter vector which requires many random simulations. The computational cost was reduced by enabling parallel computations with the ipyparallel. The decision to use this package was made because it effectively utilizes the cores on a machine.

It’s an interesting use case, though I would have liked to have seen a direct comparison to other frameworks.

Related Posts

Calculating Lifetime Value With R

Sergey Bryl shows how to calculate the lifetime value of a subscription service: Predicting LTV is a common issue for a new, recently launched product/service/application when we don’t have a lot of historical data but want to calculate LTV as soon as possible. Even though we may have a lot of historical data on customer […]

Read More

Interpreting The Area Under The Receiver Operating Characteristic Curve

Roos Colman explains what a Receiver Operating Characteristic (ROC) curve is and how we interpret the Area Under the Curve (AUC): The AUC can be defined as “The probability that a randomly selected case will have a higher test result than a randomly selected control”. Let’s use this definition to calculate and visualize the estimated […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930