Auto-Encoders And KernelML

Rohan Kotwani gives us an example where KernelML might be better than TensorFlow or PyTorch:

So what’s the point of using KernelML?

1. The parameters in each layer can be non-linear
2. Each parameter can be sampled from a different random distribution
3. The parameters can be transformed to meet certain constraints
4. Network combinations are defined in terms of numpy operations
5. Parameters are probabilistically updated
6. Each parameter update samples the loss function around a local or global minima

KerneML Specs

KernelMLis brute force optimizer that can be used to train machine learning algorithms. The package uses a combination of a machine learning and monte carlo simulations to optimize a parameter vector with a user defined loss function. Using kernelml creates a high computational cost for large complex networks because it samples the loss function using a subspace for each parameter in the parameter vector which requires many random simulations. The computational cost was reduced by enabling parallel computations with the ipyparallel. The decision to use this package was made because it effectively utilizes the cores on a machine.

It’s an interesting use case, though I would have liked to have seen a direct comparison to other frameworks.

Related Posts

Accessing Azure Event Hubs with Python

Neil Gelder shows us how you can write Python code to work with Azure Event Hubs: I’ve supplied these two python scripts in my github repo at the following link. First we need to open the install the relevant python libraries so you’ll need to issue the below pip command in whatever command tool you use, […]

Read More

The Costs of Specialization within Data Science

Eric Colson argues in favor of data science generalists rather than specialists: But the goal of data science is not to execute. Rather, the goal is to learn and develop profound new business capabilities. Algorithmic products and services like recommendations systems, client engagement bandits, style preference classification, size matching, fashion design systems, logistics optimizers, seasonal trend detection, and more can’t be […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930