Ajoy Majumdar and Zhen Li walk us through Metacat:
The core architecture of the big data platform at Netflix involves three key services. These are the execution service (Genie), the metadata service, and the event service. These ideas are not unique to Netflix, but rather a reflection of the architecture that we felt would be necessary to build a system not only for the present, but for the future scale of our data infrastructure.
Many years back, when we started building the platform, we adopted Pig as our ETL language and Hive as our ad-hoc querying language. Since Pig did not natively have a metadata system, it seemed ideal for us to build one that could interoperate between both.
Thus Metacat was born, a system that acts as a federated metadata access layer for all data stores we support. A centralized service that our various compute engines could use to access the different data sets. In general, Metacat serves three main objectives:
- Federated views of metadata systems
- Unified API for metadata about datasets
- Arbitrary business and user metadata storage of datasets
It is worth noting that other companies that have large and distributed data sets also have similar challenges. Apache Atlas, Twitter’s Data Abstraction Layer and Linkedin’s WhereHows (Data Discovery at Linkedin), to name a few, are built to tackle similar problems, but in the context of the respective architectural choices of the companies.
If you’re interested, also check out their GitHub repo.
Comments closed