Azure Data Lake Analytics Updates

Michael Rys has a boatload of new updates for Azure Data Lake:

The top items include expanding our built-in support for standard file formats with native Parquet support for extractors and outputters (in public preview) and ORC (in private preview)!

In addition, since the fast file set feature now has been generally released, we can consume hundreds of thousands of such files in bulk in a single EXTRACT statement. We will publish a blog at a later date to give you much more detailed information on how this capability helps you to process so many files efficiently in a scalable way.

Important aspects of processing files at scale include:

  1. the ability to generate many files from a rowset in a single statement, providing a way to dynamically partition the data for future use with Hadoop or Spark, or to provide individual files for customers. This has been our top customer ask on the ADL Feedback forum –and now it is in private preview!

  2. the ability to handle many small files. We recommend that you make your files large enough for the processing to be efficient (300MB to 4GB is a good range), but often, your file formats (e.g., images) or data ingestion pipelines (e.g., EventHub archives) are not able to reach that size. Thus, we are adding the ability to group several files into a vertex to increase efficiency and lower cost of your job (we have seen 10 to 30 times improvement in some customer jobs!).

Read on for the full changelog.

Related Posts

Sizing Azure SQL Database

Arun Sirpal takes us through finding the right size for Azure SQL Database: Do you want to identify the correct Service Tier and Compute Size ( was once known as performance level) for your Azure SQL Database? How would you go about it? Would you use the DTU (Database Transaction Unit) calculator? What about the […]

Read More

Cleaning Up After Yourself in Azure Data Factory

Rayis Imayev shows how you can automatically delete old files in Azure Data Factory: File management may not be at the top of my list of priorities during data integration projects. I assume that once I learn enough about sourcing data systems and target destination platform, I’m ready to design and build a data integration […]

Read More

Categories

June 2018
MTWTFSS
« May Jul »
 123
45678910
11121314151617
18192021222324
252627282930