Press "Enter" to skip to content

Machine Learning From Kafka

Kai Waehner has a post covering a recent talk he did on using Kafka as a data source for neural networks:

This talk shows how to build Machine Learning models at extreme scale and how to productionize the built models in mission-critical real time applications by leveraging open source components in the public cloud. The session discusses the relation between TensorFlow and the Apache Kafka ecosystem – and why this is a great fit for machine learning at extreme scale.

The Machine Learning architecture includes: Kafka Connect for continuous high volume data ingestion into the public cloud, TensorFlow leveraging Deep Learning algorithms to build an analytic model on powerful GPUs, Kafka Streams for model deployment and inference in real time, and KSQL for real time analytics of predictions, alerts and model accuracy.

Sensor analytics for predictive alerting in real time is used as real world example from Internet of Things scenarios. A live demo shows the out-of-the-box integration and dynamic scalability of these components on Google Cloud.

Check out the slide deck as well for more details.