Tips For Processing Large Data Sets With Python

Kevin Feasel

2018-03-30

Python

Julien Heiduk has a few tips for people looking to process large data sets within Python:

In order to aggregate our data, we have to use chunksize. This option of read_csvallows you to load massive file as small chunks in Pandas. We decide to take 10% of the total length for the chunksize which corresponds to 40 Million rows.
Be careful it is not necessarily interesting to take a small value. The time between each iteration can be too long with a small chaunksize. In order to find the best trade-off “Memory usage – Time” you can try different chunksize and select the best which will consume the lesser memory and which will be the faster.

Click through for more tips.

Related Posts

Sentiment Analysis with Spark on Qubole

Jonathan Day, et al, have a tutorial on using Qubole to build a sentiment analysis model: This post covers the use of Qubole, Zeppelin, PySpark, and H2O PySparkling to develop a sentiment analysis model capable of providing real-time alerts on customer product reviews. In particular, this model allows users to monitor any natural language text […]

Read More

Running Spark MLlib to Feed Power BI

Brad Llewellyn shows how you can take Spark MLlib results and feed them into Power BI: MLlib is one of the primary extensions of Spark, along with Spark SQL, Spark Streaming and GraphX.  It is a machine learning framework built from the ground up to be massively scalable and operate within Spark.  This makes it […]

Read More

Categories

March 2018
MTWTFSS
« Feb Apr »
 1234
567891011
12131415161718
19202122232425
262728293031