Why Does Empirical Variance Use n-1 Instead Of n?

Sebastian Sauer gives us a simulation showing why we use n-1 instead of n as the denominator when calculating the variance of a sample:

Our results show that the variance of the sample is smaller than the empirical variance; however even the empirical variance too is a little too small compared with the population variance (which is 1). Note that sample size was n=10 in each draw of the simulation. With sample size increasing, both should get closer to the “real” (population) sample size (although the bias is negligible for the empirical variance). Let’s check that.

This is an R-heavy post and does a great job of showing that it’s necessary, and ends with  recommended reading if you want to understand the why.

Related Posts

Inline Operators In R With wrapr

John Mount shows how to use inline operators in R with the wrapr package: The above code is assuming you have the wrapr package attached via already having run library('wrapr'). Notice we picked R-related operator names. We stayed away from overloading the + operator, as the arithmetic operators are somewhat special in how they dispatch in R. The goal wasn’t […]

Read More

Feature And Text Classification Using Naive Bayes In R

I wrap up my series on the Naive Bayes class of algorithms, finally writing some code along the way: Now we’re going to look at movie reviews and predict whether a movie review is a positive or a negative review based on its words. If you want to play along at home, grab the data set, […]

Read More

Categories

March 2018
MTWTFSS
« Feb Apr »
 1234
567891011
12131415161718
19202122232425
262728293031