Use Cases For Apache Kafka

Amy Boyle shows a few scenarios where New Relic uses Apache Kafka:

The Events Pipeline team is responsible for plumbing some of New Relic’s core data streams-specifically, event data. These are fine-grained nuggets of monitoring data that record a single event at a particular moment in time. For example, an event could be an error thrown by an application, a page view on a browser, or an e-commerce shopping cart transaction.

In this post, we show how we built our Kafka pipeline so that it stitches together microservices and serves as a changelog and “durable cache,” all with the idea of processing data streams as smoothly and effectively as possible at our scale. In an upcoming post, we’ll share thoughts on how we manage topic partitions in this pipeline.

If you’re wondering if Kafka might be right for you, check out this post for several scenarios which fit.

Related Posts

Building TensorFlow Neural Networks On Spark With Keras

Jules Damji has an example of using the PyCharm IDE to use Keras to build TensorFlow neural network models on the Databricks MLflow library: Our example in the video is a simple Keras network, modified from Keras Model Examples, that creates a simple multi-layer binary classification model with a couple of hidden and dropout layers and […]

Read More

Hortonworks Data Platform 3.0 Released

Saumitra Buragohain, et al, announce the newest version of the Hortonworks Data Platform: Highlighted Apache Hive features include: Workload management for LLAP:  You can assign resource pools within LLAP pool and allocate resources on a per user or per group basis. This enables support for large multi-tenant deployments. ACID v2 and ACID on by default:  We are […]

Read More

Categories

March 2018
MTWTFSS
« Feb Apr »
 1234
567891011
12131415161718
19202122232425
262728293031