Defending Pie Charts

Bobby Johnson makes a valiant effort at defending the indefensible:

In the world of data analysis, there are few things more reviled than the pie chart. Among “serious” data people, it is at best trivial and naive, and at worst downright evil.

I do not agree with this. The pie chart is simple, but that is its beauty. It does exactly one thing and it does it well: it shows you how much different parts contribute to a whole. This isn’t the only question you ever have about your data, but when it’s the question you do have, the pie chart is perfect. That is not evil and it is not naive. It is data visualization doing what it should: taking something large and abstract and saying something simple about it that your brain can easily internalize.

I strongly disagree with arguments in the article, but do respect the attempt.  In each of the cases, at least one of a bar chart, stacked 100% bar chart, or dot plot could give at least the same amount of information with less lower mental overhead.

Related Posts

Scatterplots For Multivariate Analysis

Neil Saunders declutters a complicated visual with a simple scatterplot: Sydney’s congestion at ‘tipping point’ blares the headline and to illustrate, an interactive chart with bars for city population densities, points for commute times and of course, dual-axes. Yuck. OK, I guess it does show that Sydney is one of three cities that are low density, […]

Read More

Building Cone Plots In Plotly

The Plotly blog shows how to use Python to build 3D cone plots using Plotly: This plot uses an explicitly defined vector field. A vector field refers to an assignment of a vector to each point in a subset of space. In this plot, we visualize a collection of arrows that simply model the wind […]

Read More


March 2018
« Feb Apr »